人类自然杀伤(NK)细胞占所有循环淋巴细胞的15%。NK细胞表现出抗肿瘤细胞毒性,无需事先致敏以及细胞因子和趋化因子的作用。由于NK细胞能够识别和杀死肿瘤细胞,以 NK 细胞为基础的肿瘤免疫治疗领域越来越受到人们的重视。
嵌合抗原受体(CAR)是一种受体蛋白,它赋予免疫细胞新的能力,以靶向特定的抗原蛋白。CAR-T细胞治疗在血液恶性肿瘤取得了巨大的成就。然而CAR-T细胞仍存在一些不足,例如在实体瘤的治疗中显示出很低的疗效;此外,大多数的CAR-T细胞免疫疗法需要自体过继细胞移植,因为除非处理HLA屏障,否则异基因T细胞可能导致移植物抗宿主病(GVHD);另外,CAR-T细胞免疫治疗可能会产生一些副作用,如细胞因子释放综合征。
最新的研究表明,CAR-NK细胞可能会克服 CAR-T细胞的上述缺陷,并显示出显著的抗肿瘤作用。CAR-NK细胞在肿瘤的免疫治疗中展现出广阔的前景。
CAR-NK临床前研究的数量逐年增加,这体现在每年都在增加的关于CAR-NK的研究论文。
此外,在研究的靶标方面,Her2是实体瘤最常用的靶点,而CD19抗原在血液肿瘤中最常见。使用原代NK细胞的研究中,65%的人在研究B细胞恶性肿瘤,CD19是最受欢迎的靶点。有趣的是,在使用NK细胞系的研究中,研究实体瘤是血液恶性肿瘤的2倍以上。
在临床研究方面, CD19-CAR-NK细胞对血液系统肿瘤有很高的应答率。除了CD19外,淋巴瘤和白血病的CAR-NK细胞临床研究也针对CD7(NCT02742727)和CD33(NCT02944162)。目前,有几种针对血液恶性肿瘤的CAR-NK细胞临床试验正在进行中。
还有多项针对实体瘤的研究处于启动或招募阶段。
NK细胞上表达的功能性CAR分子由三部分组成:胞外结构域、跨膜区以及胞内的信号结构域。胞外结构域由一个信号肽和识别抗原的单链抗体片段(scFv)组成,一段铰链区将这个结构连接到跨膜区,它也在细胞内连接到包含激活信号的胞内结构域。成功的CAR设计是通过仔细的设计和功能测试相结合来实现的。
载体骨架和启动子
载体骨架包含表达CAR所需的所有元件,如启动子、polyA信号和转录调控片段。
启动子的选择直接影响到转基因的表达水平。目前,对不同启动子在NK细胞系中的CAR表达和功能的比较只有一次报道,而对原代NK细胞没有比较数据。就这一次单个报告来看,还不能确定CAR-NK细胞的最佳启动子。
目前关于CAR-NK细胞的报道显示,多种启动子被用于驱动CAR的表达,无论是细胞系来源的还是原代NK细胞。在原代CAR-NK和CAR-NK细胞系中,病毒启动子(CMV、MPSV、MMLV、SFFV等)比组成性活性启动子(如EF1α、CMV和PGK)更常用。
信号肽
在信号肽中存在着巨大的异质性,这直接转化为不同水平的蛋白质分泌效率。对于CAR-NK和CAR-T细胞,还没有确定最佳信号肽的比较研究。目前,CD8a-SP是原代NK细胞最常用的信号肽序列(16%,71%的研究中未公布)和NK细胞系的免疫球蛋白重链或轻链信号肽(29%)。
单链抗体
单链抗体片段是CAR的肿瘤抗原结合域,该结构域将决定CAR-NK细胞的特异性和功能。
由于单链抗体不是抗体的天然形式,因此重链和轻链的顺序是人工确定的。到目前为止,对于CAR-NK设计,大多数更喜欢VH-VL方向,而不是VL-VH方向。Fujiwara等人证明重链和轻链的顺序不影响T细胞上抗KDR CAR的表达水平。
此外,细胞可以配备多个单链抗体,从而扩大CAR效应细胞的抗原识别能力。在这里,有多种选择:CARs可以用双元件的载体转导,诱导两个CAR结构的表达;或者将两个单链抗体融合在一个结构中,产生串联单链抗体的“单柄”CAR。虽然这些技术已用于生产CAR-T细胞,但CAR-NK细胞仍未知。
目前大多数临床CAR-T细胞试验都使用了来自小鼠抗体的单链抗体,这增加了抗小鼠IgG细胞宿主抗移植物病的风险,这个问题可以通过人源化或筛选全人抗体避免。然而不幸的是,由于这些CAR受体的嵌合特性,即使是人源化的单链抗体也可能诱导宿主抗独特型免疫反应。幸运的是,在迄今为止数量有限的CAR-NK临床试验中,没有发现与抗CAR免疫反应相关的重大副作用。
连接区
重链和轻链之间的连接区有助于稳定单链抗体的构象,过短会导致多聚体的形成,过长可能导致水解或降低VH和VL结构域之间的关联。对于CAR-NK细胞,五肽GGGGS的多聚体应用最为广泛,通常为3个重复。另一个旨在增强蛋白水解稳定性的连接体是Whitlow“218”连接体:GSTGSGSKPGSGEGSTKG。
目前,虽然大多数CAR-NK研究没有提供连接细节,但已有的研究报道中,有22项使用了G4S连接,有2项应用了218连接。
铰链区
铰链区是连接单链抗体单位和跨膜结构域的CAR细胞外结构区,它通常维持效应细胞中稳健的CAR表达和活性所需的稳定性。大多数CAR-NK构建使用CD8α或CD28胞外结构域的衍生物或基于IgG的铰链区。
铰链区的类型和长度对CAR的功能活动有重要影响。但是目前大多数信息全来自CAR-T领域,能否直接转化为CAR-NK还有待证明。
在CD28和CD8α铰链区之间的直接比较中,发现CD28更有可能促进CAR分子的二聚化,因此,CD28铰链区的CAR产生的激活刺激更强。虽然这可能是有益的,但也可能导致更严重的副作用。
IgG为基础的铰链区也广泛应用于CAR结构。基于IgG铰链区的一个主要优点是结构的灵活性,该结构通常由IgG1或IgG4的FC部分或Fc部分的CH2/CH3结构域组成。铰链区的长度可以调节以适应抗原识别,但研究发现,间隔区越短,细胞因子的产生越高,CAR-T细胞增殖越快,体内持久性和抗肿瘤效果越好。
对于CAR-NK细胞,大多数研究在原代NK细胞(16/35)和CAR-NK细胞系(41/72)中均采用CD8α铰链区。其它使用的铰链区包括CD28、IgG Fc结构域和DAP12。
跨膜结构域
跨膜(TM)结构域连接CAR的胞外结构域和细胞内激活信号结构域,CAR-NK最常用的TM部分来自CD3ζ、CD8和CD28,但其他如NKG2D、2B4、DNAM1也有被使用。
TM结构域的选择影响了CAR结构在细胞功能上的活化程度。通常在NK细胞上表达的分子如DNAM-1、2B4和NKG2D的TM会导致更多的CD107a脱颗粒和更高的细胞毒性,因此,TM的具体来源将决定CAR-NK的活性。
TM结构域的一个重要方面是,最佳TM区域应遵循T细胞或NK细胞上跨膜蛋白的蛋白质自然取向(N端到C端顺序)。NKG2D虽然是一种强大的NK细胞激活剂,然而,天然NKG2D具有C端到N端的跨膜区。
目前,CD8α和CD28修饰的TM在原代CAR-NK细胞中最常见,而CD28是CAR-NK细胞系的首选TM区域。
CAR-NK激活信号
CAR的细胞内激活信号的数量决定了其属于哪一“代”CAR。
第一代CAR-NK细胞与CAR-T细胞一样,只含有CD3ζ信号。第二代和第三代CAR-NK分别携带一个和两个额外的共刺激信号,共刺激分子通常来源于CD28家族(CD28和ICOS)、TNFR家族(4-1BB、OX40和CD27)或SLAM相关受体家族(2B4)。到目前为止,唯一公布的CAR-NK临床试验采用了第二代CAR-NK构建,该构建通过加入IL-15表达和诱导Caspase9增强活性。
目前大多数CAR结构依赖于CD3ζ链信号域,强烈的激活信号对于诱导有效的抗肿瘤反应很重要,但也可能导致效应细胞的快速衰竭。因此,共刺激域的组合可用于校准所需的免疫细胞反应。与基于4-1BB的 CARs相比,基于CD28的CARs表现出更快的效应器特征,诱导更高水平的IFN-γ、颗粒酶B、TNF-α。然而,这种强烈的共刺激信号也会导致活化诱导的细胞死亡(AICD)。
相比较,4-1BB-CD3ζ信号优先诱导记忆相关基因和持续的抗肿瘤活性。原因可能是4-1BB结构域改善了CD28结构域引起的T细胞耗竭。
如上图所示,在CAR-NK细胞系和原代CAR-NK细胞的研究中,CD3ζ几乎被普遍用作主要的激活域,其中大约一半携带一个额外的激活域,通常添加4-1BB或CD28。至于第三代结构,CD28/4-1BB/CD3ζ的组合是最常用的。
随着基因修饰技术的进步,许多方法被用于产生CAR-NK。两种主要方法是病毒转导(使用慢病毒或逆转录病毒),或转染裸质粒DNA、转座酶DNA介导的整合以及mRNA电转。
慢病毒
慢病毒能够高效地转导周期性和非周期性细胞,在基因治疗领域得到了广泛的应用。迄今为止,已有14篇关于原代CAR-NK细胞和44篇关于CAR-NK细胞系的研究成功使用慢病毒作为载体。
在临床前研究中,21项研究使用了第二代病毒,6项研究使用了第三代慢病毒来产生表达CAR的NK细胞系(17个未知)。在原代CAR-NK细胞研究中,5项研究使用了第三代慢病毒,7项研究使用了第二代慢病毒载体(2个未知)。
逆转录病毒
几十年来,逆转录病毒一直被用作基因治疗载体。迄今为止,有20项使用CAR-NK细胞系的研究和15使用原代NK细胞的研究应用了逆转录病毒。最近的一项I期临床试验中,由逆转录病毒转导的CD19 CAR-NK细胞治疗CD19+非霍奇金淋巴瘤和慢性淋巴细胞白血病。在这项研究中,73%的患者有响应,8名患者中有7名获得完全缓解。此外,在所有剂量水平下,CAR-NK输注后30天内反应迅速。经过一年的随访,仍然可以检测到扩增的CAR-NK细胞。输注后,外周血中的CAR-NK DNA拷贝数保持稳定达一年之久,这些结果首次表明逆转录病毒转导的CAR-NK细胞可以在体内长期存活。
不同种类的逆转录病毒被用来产生CAR-NK细胞。与γ逆转录病毒和慢病毒相比,RD114α逆转录病毒在原代NK细胞的转导效率上更高。尽管使用不同的逆转录病毒可以在NK细胞中获得长时间稳定的CAR表达,但逆转录病毒系统的安全性仍然是一个值得关注的问题,尤其是与更安全的慢病毒相比。
mRNA电穿孔
电穿孔CAR编码mRNA是一种快速、有效但是作用短暂的一种方法。迄今为止,有9个关于CAR-NK细胞系和11个原代CAR-NK细胞研究使用了mRNA电穿孔。
一般来说,扩增或活化的NK细胞的mRNA转染效率远高于新鲜分离的NK细胞。由于mRNA的合成符合GMP的规定,并且电穿孔可以在洁净室中进行,因此通过mRNA电穿孔产生符合GMP的CAR-NK是可行的。然而,这种方法的主要缺点是CAR表达的窗口短暂:电穿孔后,CAR-NK细胞应在7天内输回患者体内。
睡美人转座子
基于转座子的系统可以在预定的位置高效地导入CAR转基因,这是传统方法所不具备的一个重要优势。转座子主要通过电穿孔导入NK细胞,然后通过转座子酶整合到宿主基因组中。有两项研究应用转座子系统来产生CAR-NK细胞:一项使用NK-92-MI细胞,另一项研究将转座子转染到iPSC细胞,然后分化成NK细胞。富集后,抗间皮素CARs在iPSC衍生的NK细胞上稳定表达,并在卵巢癌小鼠模型中发挥出作用。
CRISPR/Cas9
CRISPR/Cas9是一种强大的基因改造技术,这项技术依赖于将Cas9蛋白与引导RNA一起导入NK细胞。最初,这种技术被用于原代NK细胞,以破坏CD38基因,旨在防止NK细胞与daratumumab (抗CD38)联合使用时的自相残杀,因为CD38在NK细胞、多发性骨髓瘤和AML细胞上均有表达。
最近,CRISPR/Cas9被用于引入新基因。在一些采用HDR模板的研究中,使用K562-mIL-21扩增的NK细胞获得了超过75%的敲入效率。然而,在新鲜NK细胞中,敲入效率仅为3–16%。总的来说,CRISPR/Cas9策略是一种很有前景的技术,它可以用来精确地删除、修复或导入特定基因,有望产生强大的抗肿瘤NK细胞。
NK细胞是一类独特的抗肿瘤效应细胞,具有不受 MHC 限制的细胞毒性、产生细胞因子和免疫记忆等功能。CAR-NK细胞疗法是一个很有前途的临床研究领域,对某些癌症患者具有良好的安全性和初步疗效。
目前,对CAR-NK细胞的研究越来越多,基于CAR-T细胞治疗的成功经验,以及新技术和新方法的应用,相信CAR-NK细胞治疗一定能够克服种种挑战,为肿瘤治疗带来新的突破。
参考文献:
1. Chimeric antigen receptornatural killer (CAR-NK) cell design and engineering for cancer therapy. JHematol Oncol. 2021; 14: 73.
2. Natural Born Killers: NK Cells in Cancer Therapy. Cancers (Basel). 2020 Jul
31;12(8):2131
编辑:小果果,转载请注明出处:https://www.cells88.com/cells/myxb/13706.html
免责声明:本站所转载文章来源于其他平台,主要目的在于分享行业相关知识,传递当前最新资讯。图片、文章版权均属于原作者所有,如有侵权,请及时告知,我们会在24小时内删除相关信息。
说明:本站所发布的案例均摘录于文献,仅用于科普干细胞与再生医学相关知识,不作为医疗建议。